Cast of integers #
This file defines the canonical homomorphism from the integers into an
additive group with a one (typically a Ring). In additive groups with a one
element, there exists a unique such homomorphism and we store it in the
intCast : ℤ → R field.
Preferentially, the homomorphism is written as a coercion.
Main declarations #
Int.cast: Canonical homomorphismℤ → R.AddGroupWithOne: Type class forInt.cast.
Default value for IntCast.intCast in an AddGroupWithOne.
Instances For
Additive groups with one #
An AddGroupWithOne is an AddGroup with a 1. It also contains data for the unique
homomorphisms ℕ → R and ℤ → R.
- add : R → R → R
- zero : R
- nsmul_zero : ∀ (x : R), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : R), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- one : R
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- neg : R → R
- sub : R → R → R
- sub_eq_add_neg : ∀ (a b : R), a - b = a + -b
- zsmul_zero' : ∀ (a : R), AddGroupWithOne.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : R), AddGroupWithOne.zsmul (↑n.succ) a = AddGroupWithOne.zsmul (↑n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : R), AddGroupWithOne.zsmul (Int.negSucc n) a = -AddGroupWithOne.zsmul (↑n.succ) a
- neg_add_cancel : ∀ (a : R), -a + a = 0
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
The canonical homomorphism
ℤ → Ragrees with the one fromℕ → Ronℕ. - intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
The canonical homomorphism
ℤ → Rfor negative values is just the negation of the values of the canonical homomorphismℕ → R.
Instances
class
AddCommGroupWithOne
(R : Type u)
extends AddCommGroup R, AddGroupWithOne R, AddCommMonoidWithOne R :
Type u
An AddCommGroupWithOne is an AddGroupWithOne satisfying a + b = b + a.
- add : R → R → R
- zero : R
- nsmul_zero : ∀ (x : R), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : R), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- neg : R → R
- sub : R → R → R
- sub_eq_add_neg : ∀ (a b : R), a - b = a + -b
- zsmul_zero' : ∀ (a : R), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : R), SubNegMonoid.zsmul (↑n.succ) a = SubNegMonoid.zsmul (↑n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : R), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑n.succ) a
- neg_add_cancel : ∀ (a : R), -a + a = 0
- one : R
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)