Prefixes, suffixes, infixes #
This file proves properties about
List.isPrefix:l₁is a prefix ofl₂ifl₂starts withl₁.List.isSuffix:l₁is a suffix ofl₂ifl₂ends withl₁.List.isInfix:l₁is an infix ofl₂ifl₁is a prefix of some suffix ofl₂.List.inits: The list of prefixes of a list.List.tails: The list of prefixes of a list.inserton lists
All those (except insert) are defined in Mathlib.Data.List.Defs.
Notation #
l₁ <+: l₂:l₁is a prefix ofl₂.l₁ <:+ l₂:l₁is a suffix ofl₂.l₁ <:+: l₂:l₁is an infix ofl₂.
prefix, suffix, infix #
@[deprecated List.IsSuffix.reverse]
Alias of List.IsSuffix.reverse.
@[deprecated List.IsPrefix.reverse]
Alias of List.IsPrefix.reverse.
@[deprecated List.IsInfix.reverse]
Alias of List.IsInfix.reverse.
theorem
List.dropSlice_sublist
{α : Type u_1}
(n m : ℕ)
(l : List α)
:
(List.dropSlice n m l).Sublist l
theorem
List.mem_of_mem_dropSlice
{α : Type u_1}
{n m : ℕ}
{l : List α}
{a : α}
(h : a ∈ List.dropSlice n m l)
:
a ∈ l
@[deprecated List.IsPrefix.filterMap]
theorem
List.IsPrefix.filter_map
{α : Type u_1}
{β : Type u_2}
(f : α → Option β)
⦃l₁ l₂ : List α⦄
(h : l₁ <+: l₂)
:
List.filterMap f l₁ <+: List.filterMap f l₂
Alias of List.IsPrefix.filterMap.
instance
List.instIsPartialOrderIsPrefix
{α : Type u_1}
:
IsPartialOrder (List α) fun (x1 x2 : List α) => x1 <+: x2
Equations
- ⋯ = ⋯
instance
List.instIsPartialOrderIsSuffix
{α : Type u_1}
:
IsPartialOrder (List α) fun (x1 x2 : List α) => x1 <:+ x2
Equations
- ⋯ = ⋯
instance
List.instIsPartialOrderIsInfix
{α : Type u_1}
:
IsPartialOrder (List α) fun (x1 x2 : List α) => x1 <:+: x2
Equations
- ⋯ = ⋯
insert #
@[simp]
theorem
List.suffix_insert
{α : Type u_1}
[DecidableEq α]
(a : α)
(l : List α)
:
l <:+ List.insert a l
theorem
List.infix_insert
{α : Type u_1}
[DecidableEq α]
(a : α)
(l : List α)
:
l <:+: List.insert a l
theorem
List.sublist_insert
{α : Type u_1}
[DecidableEq α]
(a : α)
(l : List α)
:
l.Sublist (List.insert a l)
@[deprecated List.IsSuffix.mem]
theorem
List.mem_of_mem_suffix
{α✝ : Type u_1}
{l₁ : List α✝}
{a : α✝}
{l₂ : List α✝}
(hx : a ∈ l₁)
(hl : l₁ <:+ l₂)
:
a ∈ l₂
Alias of List.IsSuffix.mem.
@[deprecated List.IsPrefix.head]
theorem
List.IsPrefix.head_eq
{α : Type u_1}
{x y : List α}
(h : x <+: y)
(hx : x ≠ [])
:
x.head hx = y.head ⋯
Alias of List.IsPrefix.head.